Cambridge AS & A Level # CHEMISTRY Paper 1 Topical Past Paper Questions + Answer Scheme 2015 - 2021 # Chapter 18 # Carboxylic acids and derivatives # 18.1 Carboxylic acids A student suggests two uses of $LiAlH_4$. reaction 1 $$CH_3$$ — CH = CH_2 CH_3 — CH_3 — CH_3 — CH_3 — CH_3 reaction 2 CH_3CO_2H CH_3CH_4 — CH_3CH_2OH Which reactions would give the product shown? - A both reactions - B reaction 1 only - C reaction 2 only - D neither reaction Which compound would produce two different carboxylic acids when treated with hot, concentrated, acidified manganate(VII) ions? 1086. 9701 s21 qp 13 Q: 28 Compound Y is treated with a single reagent under suitable conditions. 2-methylbutanoic acid is produced. What could compound Y be? A pentan-2-one B 2-methylbutan-2-ol C 2-methylbutanenitrile **D** methylpropanenitrile 1087. 9701 w21 qp 12 Q: 24 Butanoic acid can be made from 1-bromopropane in two stages. stage 1 $CH_3CH_2CH_2Br \rightarrow CH_3CH_2CH_2CN$ stage 2 $CH_3CH_2CH_2CN \rightarrow CH_3CH_2CH_2CO_2H$ Which types of reaction are stage 1 and stage 2? | | stage 1 | stage 2 | |---|---------------------------|------------| | Α | electrophilic addition | hydrolysis | | В | electrophilic addition | oxidation | | С | nucleophilic substitution | hydrolysis | | D | nucleophilic substitution | oxidation | $$1088.\ 9701_w21_qp_12\ Q:\ 29$$ Organic compound Z has an alcohol group and a carboxylic acid group. Compound Z reacts with magnesium carbonate to make a salt with a relative formula mass of 230.3. Compound Z does not react with acidified potassium manganate(VII). What could be the identity of compound Z? A 2-hydroxy-2-methylbutanoic acid B 2-hydroxy-2-methylpropanoic acid C 3-hydroxy-2-methylbutanoic acid D 3-hydroxy-2-methylpropanoic acid Compound X is treated with an excess of lithium aluminium hydride. The reaction is allowed to go to completion. What is the structure of the organic product? $$1090.\ 9701_s20_qp_11\ Q:\ 30$$ Which reaction produces an organic anion with a good yield? - A heating ethanenitrile under reflux with dilute sodium hydroxide - B heating ethanenitrile under reflux with dilute sulfuric acid - C heating ethane with sodium metal - D heating ethanol under reflux with dilute sodium hydroxide $1091.\ 9701_s20_qp_12\ Q:\ 20$ Compound X is shown. X is treated separately with NaOH(aq) and LiA1H4 to give Y and Z. # What are Y and Z? | | Υ | Z | |---|---------------------------|-------------------| | A | CO ₂ Na
OH | CH₂OH
OH | | В | CO₂Na
OH | CO ₂ H | | С | CO₂Na
ONa | CH₂OH
OH | | D | CO ₂ Na
ONa | CO ₂ H | $$1092.\ 9701_s20_qp_13\ Q\hbox{:}\ 23$$ Butanoic acid can be produced from 1-bromopropane in two steps using reagents V and W as shown. # What could be reagents V and W? | | V | W | |---|----------------|-------------------------------------------------------------------| | Α | KCN in ethanol | HCℓ(aq) | | В | KCN in ethanol | NaOH(aq) | | С | NH₃ in ethanol | HCℓ(aq) | | D | NaOH(aq) | H ⁺ /Cr ₂ O ₇ ²⁻ (aq) | Which reagent reacts with both of the -OH groups in lactic acid, CH₃CH(OH)CO₂H? - A acidified potassium dichromate(VI) - **B** ethanol - C sodium - **D** sodium hydroxide $$1094.\ 9701_w20_qp_11\ Q:\ 24$$ A student converts 1-iodopropane, C_3H_7I , into butanoic acid, $C_3H_7CO_2H$, by a two-stage chemical synthesis. In the first of the two stages, which reagent is reacted with 1-iodopropane? - A aqueous sodium hydroxide - B ethanolic ammonia - C ethanolic potassium cyanide - D ethanolic sodium hydroxide $1095.\ 9701_w20_qp_11\ Q:\ 29$ Which compound is chiral and reacts with Na₂CO₃ to give CO₂? $1096.\ 9701_w20_qp_12\ Q:\ 18$ Which substance, when warmed with aqueous ammonium chloride, would produce an alkaline gas? A CH₃CO₂H B CH₃CH₂OH C CH₃CO₂CH₃ D CH₃CH₂ONa $1097.\ 9701_w20_qp_12\ Q:\ 29$ Compound Z is shown. # compound Z What is produced in good yield when compound Z is treated with an excess of sodium carbonate solution at room temperature? $1098.\ 9701_m19_qp_12\ Q:\ 29$ 1 mole of each of the following four compounds is reacted separately with: - an excess of sodium - an excess of sodium carbonate. Which compound produces the same volume of gas with each of the **two** reagents? 1099. 9701_s19_qp_11 Q: 28 Compound X is treated with two reagents successively, forming compound Z What could be Z? $1100.\ 9701_s19_qp_12\ Q:\ 28$ The diagram shows that a carboxylic acid P may be formed from X, Y or Z. #### Which row is correct? | | alcohol X is | the change in $M_{\rm r}$ is greatest for | |---|--------------|-------------------------------------------| | Α | primary | Y to P | | В | primary | Z to P | | С | secondary | Y to P | | D | secondary | Z to P | $1101.\ 9701_w19_qp_11\ Q:\ 28$ Tartaric acid, HO₂CCH(OH)CH(OH)CO₂H, is found in many plants. A sample of tartaric acid reacts with an excess of LiAlH4 to form the organic product J. What happens when NaOH(aq) is added to separate samples of tartaric acid and J? - Both tartaric acid and J react. Α - Only tartaric acid reacts. - Only J reacts. - Neither tartaric acid nor J react. $1102.\ 9701_m18_qp_12\ Q:\ 22$ Compound X can be converted into compound Y in a single step. $$X \longrightarrow \bigvee_{O} \bigvee_{Y} OH$$ What could be the identity of X? $1103.\ 9701_s18_qp_11\ Q:\ 28$ Which reagent could be used to carry out the following reaction? - A a solution containing acidified dichromate(VI) ions - B a solution containing dilute, acidified manganate(VII) ions - C a solution containing hot, concentrated, acidified manganate(VII) ions - D concentrated sulfuric acid $$1104.9701_s18_qp_11~Q:29$$ Four reactions of propanoic acid to form salts and other products are shown. Which reaction does not show the formulae of all the correct products? Ethanal, CH₃CHO, is used to make product R in a three-stage synthesis. Two molecules of Q react to give one molecule of R plus two molecules of water. R has two ester functional groups in each molecule. R does not react with sodium. What is the empirical formula of R? **A** CHO **B** $$C_3H_4O_2$$ **C** $C_3H_5O_2$ **D** $C_6H_{10}O_5$ A student carried out a two-stage synthesis in which CH₃CH₂CH₂Br was converted into CH₃CH₂CH₂CO₂H. Which compound could have been formed by the first stage of this synthesis? - A CH₃CH₂CH₂OH - B CH₃CH₂CH₂CHO - C CH₃CH₂CN - D CH₃CH₂CH₂CN $1107.\ 9701_w18_qp_11\ Q:\ 26$ Sodium reacts with 1 mol of compound Y to produce 1 mol of $H_2(g)$. Which compound could Y be? - A CH₃CH₂CH₂CH₂OH - B (CH₃)₃COH - C CH₃CH₂CH₂CO₂H - D CH₃CH(OH)CO₂H $1108.\ 9701_w18_qp_11\ Q:\ 28$ Ethanedioic acid, HO₂CCO₂H, is reduced using an excess of lithium aluminium hydride, LiA1H₄. What is the organic product of the reaction? - A ethanol - B ethane-1,2-diol - C ethanedial, OHCCHO - **D** methane 1109. 9701_w18_qp_12 Q: 29 Which compound can be used to make propanoic acid by treatment with a single reagent? - A CH₂=CHCH₂CH₃ - B CH₃CH₂CH₂CN - C CH₃CH(OH)CN - D CH₃CH(OH)CH₃ 1110. 9701_s17_qp_11 Q: 27 ${f Q}$ is a compound with the molecular formula $C_4H_{10}O$. ${f Q}$ can be oxidised with acidified potassium dichromate(VI). ${f Q}$ cannot be made by reducing a carboxylic acid with LiA IH_4 . What is the structure of Q? - A CH₃CH(OH)CH₂CH₃ - B CH₃CH₂CH₂CH₂OH - C (CH₃)₃COH - D (CH₃)₂CHCH₂OH $$1111.\ 9701_s17_qp_11\ Q{:}\ 30$$ Citral is found in lemongrass oil. It can react to give compound W. What could compound W be? A B C D $$CO_2H$$ CO_2H CO_2H CO_2H Carboxylic acids may be prepared by several different methods In which reaction would propanoic acid be formed? - A adding ammonium propanoate to dilute sulfuric acid - B heating ethyl propanoate with aqueous sodium hydroxide - C heating propan-2-ol with acidified potassium manganate(VII) under reflux - D heating propyl ethanoate with dilute sulfuric acid $1113.\ 9701_s17_qp_13\ Q:\ 28$ Chlorogenic acid is found in green coffee beans and is used in treatments for weight loss. $R = C_6H_5O_2$ and takes no part in the reaction with sodium carbonate. chlorogenic acid What is produced in good yield when chlorogenic acid is treated with an excess of sodium carbonate solution at room temperature? $$1114.\ 9701_s17_qp_13\ Q:\ 29$$ Butanoic acid can be produced from 1-bromopropane using reagents X and Y as shown. What could be reagents X and Y? | | Х | Y | |---|----------------|-------------------------------------------------------------------| | Α | KCN in ethanol | HCℓ(aq) | | В | KCN in ethanol | NaOH(aq) | | С | NH₃ in ethanol | HCℓ(aq) | | D | NaOH(aq) | H ⁺ /Cr ₂ O ₇ ²⁻ (aq) | Citric acid can be converted into tricarballylic acid in two stages. An intermediate, Q is formed. ## Which reagents are needed for each stage? | | stage 1 | stage 2 | |---|---------------------------------------------|-----------------------------| | Α | concentrated H ₂ SO ₄ | H ₂ (g) and Ni | | В | concentrated H ₂ SO ₄ | LiA <i>l</i> H ₄ | | С | LiAℓH₄ 🏻 🛕 | H₂SO₄(aq) | | D | NaOH(aq) | H₂(g) and Ni | 3-methylbutanone is treated with alkaline aqueous iodine. The mixture of products is then acidified. Which compound is present in the final mixture of products? - A 3-methylbutanoic acid - B butanoic acid - C methylpropanoic acid - D propanoic acid $$1117.\ 9701_w17_qp_11\ Q:\ 28$$ At room temperature, propanoic acid was reacted to produce sodium propanoate. No gas was produced during the reaction. What could the propanoic acid have reacted with? NaHCO₃(aq) **B** NaOH(aq) \mathbf{C} Na₂CO₃(aq) D Na₂SO₄(aq) 1118. 9701 s16 qp 11 Q: 22 Which pair of reagents will take part in a redox reaction? - A CH₃CHCH₂ + Br₂ - CH₃CH₂CH₂OH + concentrated H₃PO₄ - CH₃COCH₃ + HCN - D HCO₂C₂H₅ + dilute H₂SO₄ 1119. 9701_s16_qp_11 Q: 26 Malic acid is found in apples. malic acid Which reagent will react with all three -OH groups present in the malic acid molecule? - ethanol in the presence of concentrated sulfuric acid - potassium hydroxide В - sodium С - sodium carbonate How many of the following compounds produce a carboxylic acid on heating under reflux with an excess of hot acidified K₂Cr₂O₇? CH₃CH₂CHO CH₃COCH₃ CH₃CH₂CH₂OH CH₃CH(OH)CH₃ Α 1 **B** 2 С 3 **D** 4 $$1121.\ 9701_w16_qp_11\ Q:\ 28$$ Which reaction would not give ethanoic acid? - A heating ethanenitrile under reflux with dilute sodium hydroxide - B heating ethanenitrile under reflux with dilute sulfuric acid - C heating ethanal under reflux with acidified sodium dichromate(VI) - D heating ethanol under reflux with acidified sodium dichromate(VI) Butanedioic acid may be synthesised in two steps from 1,2-dibromoethane. $$BrCH_2CH_2Br \xrightarrow{step 1} X \xrightarrow{step 2} HO_2CCH_2CH_2CO_2H$$ Which reagents could be used for this synthesis? | | step 1 | step 2 | |---|----------------|------------------------------------------------------------------------------------| | Α | HCN(g) | HC <i>l</i> (aq) | | В | HCO₂Na(aq) | HC <i>l</i> (aq) | | С | KCN(alcoholic) | H₂SO₄(aq) | | D | NaOH(aq) | K ₂ Cr ₂ O ₇ /H ₂ SO ₄ (aq) | Compound X, C₅H₁₂O, is oxidised by acidified sodium dichromate(VI) to compound Y. Compound \mathbf{Y} reacts with butan-2-ol in the presence of a little concentrated sulfuric acid to give liquid \mathbf{Z} . What could be the formula of Z? - A CH₃(CH₂)₃CO₂CH(CH₃)CH₂CH₃ - B CH₃(CH₂)₃CO₂(CH₂)₃CH₃ - C CH₃(CH₂)₂CO₂CH(CH₃)CH₂CH₃ - $\mathbf{D} \quad (CH_3)_2 CHCH_2 CO_2 C(CH_3)_3$ 1124. 9701 s15 qp 13 Q: 30 Malic acid occurs in apples. malic acid Under suitable conditions, which substance will react with only one of the -OH groups in the malic acid molecule? - **A** $Cr_2O_7^{2-}/H^+(aq)$ - B Na(s) - C NaOH(aq) - **D** $PCl_5(s)$ 1125. 9701 w15 qp 11 Q: 25 If the starting material is iodoethane, which sequence of reactions will produce propanoic acid as the main final product in good yield? - A add NaOH(aq), isolate the organic product, add acidified K₂Cr₂O₇ and boil under reflux - B add NaOH(aq), isolate the organic product, add H₂SO₄(aq) and boil under reflux - C heat with HCN in ethanol, isolate the organic product, add H₂SO₄(aq) and boil under reflux - D heat with KCN in ethanol, isolate the organic product, add H₂SO₄(aq) and boil under reflux ## 18.2 Esters 1126. 9701 m22 qp 12 Q: 27 Which compound will decolourise Br₂(aq)? - A CH₃CH₂CH₂CH₂CH₂CO₂H - B CH₃CH₂CH₂CH₂CH₂CHO - C CH₃CHCHCH₂CH₂CH₂OH - D CH₃CH₂CH₂CO₂CH₂CH₃ $1127.\ 9701_m22_qp_12\ Q:\ 35$ Compound X contains a single ester group. X contains 27.6% by mass of oxygen. Which pair of products could be produced by the hydrolysis of X? - A butan-1-ol and ethanoic acid - B ethanol and propanoic acid - C methanol and methanoic acid - D propan-2-ol and butanoic acid $1128.\ 9701_m21_qp_12\ Q:\ 23$ Part of the structure of strobilurin is shown. R and R' are inert groups. ## strobilurin Strobilurin is warmed with aqueous sulfuric acid producing compound X. Compound X is then treated with hydrogen in the presence of a nickel catalyst producing compound Y. What could be the structure of compound Y? $1129.\ 9701_m21_qp_12\ Q:\ 28$ Ethanedioic acid has the formula HO₂CCO₂H. What is the formula of aluminium ethanedioate? A $$AlC_2O_4$$ **B** $$Al(C_2O_4)_3$$ $$C A l_2 C_2 O_4$$ **D** $$Al_2(C_2O_4)_3$$ $$1130.\ 9701_m21_qp_12\ Q:\ 29$$ Which reaction gives butanoic acid as one of its products? - A acid hydrolysis of butyl ethanoate - B alkaline hydrolysis of butyl ethanoate - C acid hydrolysis of ethyl butanoate - D alkaline hydrolysis of ethyl butanoate $$1131.\ 9701_s21_qp_11\ Q:\ 24$$ The compound cetyl palmitate, C₁₅H₃₁CO₂C₁₆H₃₃, is a waxy solid. Cetyl palmitate is heated under reflux with an excess of aqueous sodium hydroxide. Which products will be formed? A $$C_{15}H_{31}ONa$$ and $C_{16}H_{33}CO_2Na$ $$\mathbf{C}$$ $C_{15}H_{31}OH$ and $C_{16}H_{33}CO_{2}Na$ $$D$$ $C_{15}H_{31}CO_2Na$ and $C_{16}H_{33}OH$ To which classes of alcohol do P and Q belong? | | P | Q | |---|-----------|-----------| | Α | primary | primary | | В | primary | secondary | | С | secondary | primary | | D | secondary | secondary | The structural formula of an ester is (CH₃)₂CHOCO(CH₂)₂CH₃. This ester is boiled with aqueous hydrochloric acid. Which two products are formed? - A propan-1-ol and butanoic acid - B propan-2-ol and butanoic acid - C propan-1-ol and propanoic acid - D propan-2-ol and propanoic acid The structural formula of an ester is (CH₃)₂CHOCO(CH₂)₂CH₃. This ester is boiled with aqueous hydrochloric acid. Which two products are formed? - A propan-1-ol and butanoic acid - B propan-2-ol and butanoic acid - C propan-1-ol and propanoic acid - D propan-2-ol and propanoic acid $$1135.\ 9701\ m20\ qp\ 12\ Q:\ 27$$ Which reaction would produce propanoic acid as one of its products? - A heating (CH₃)₂C=CHCH₂CH₃ with concentrated, acidified KMnO₄ - **B** heating CH₃CH₂CO₂CH₂CH₂CH₃ with NaOH(aq) - C heating CH₃CH₂OH with acidified K₂Cr₂O₇ under reflux - **D** reacting CH₃CHO with HCN then heating the organic product with H₂SO₄(aq) When compound X is heated under reflux with aqueous sodium hydroxide solution two products are formed: sodium ethanoate and hexan-1-ol. What is compound X? $1137.\ 9701_s20_qp_12\ Q:\ 23$ Ester X is shown. ester X $CH_3CO_2(CH_2)_7CH_3$ Ester X is hydrolysed using aqueous sodium hydroxide. What is the molecular formula of one of the products? A $C_2H_4O_2$ \mathbf{B} $C_2H_3O_2Na$ **C** C₈H₁₆O D C₈H₁₇O₂Na $1138.\ 9701_s20_qp_13\ Q:\ 21$ Ester P has the following structural formula. ester P Which compounds are produced when P is hydrolysed using dilute hydrochloric acid? - A CH₃COC1 and (CH₃)₂CHCH₂CH₂OH - B CH₃CH₂OH and (CH₃)₂CHCH₂CO₂H - C CH₃CO₂H and (CH₃)₂CHCH₂CO₂H - D CH₃CO₂H and (CH₃)₂CHCH₂CH₂OH $1139.\ 9701_s19_qp_12\ Q:\ 29$ One molecule of compound R is shown. compound R What is the name of compound R and how does its boiling point compare with that of butanoic acid? | acid? | · | | ' | |-----------|-------------------|---------------------------|----| | | name of R | boiling point of R | | | Α | methyl propanoate | higher than butanoic acid | | | В | methyl propanoate | lower than butanoic acid | | | С | propyl methanoate | higher than butanoic acid | 10 | | D | propyl methanoate | lower than butanoic acid | 40 | | | | | | | Palpacain | | | | $1140.\ 9701_s19_qp_13\ Q:\ 30$ An ester is shown. What is the structure of the carboxylic acid that would be obtained by acid hydrolysis of the ester linkage? $1141.\ 9701_w19_qp_12\ Q:\ 29$ Compound Q can be hydrolysed by HCl(aq). The two products of this hydrolysis have the same empirical formula. What could Q be? - A CH₃CO₂CH₂CH₂OH - B CH₃CO₂CH₂CH₂CO₂H - C CH₃CH₂CO₂CH₂CH₂CH₃ - D CH₃CH₂CH(OH)CH(OH)CH₂CH₃ Hydrogen ions catalyse the hydrolysis of esters. Which statement is correct? - A The hydrogen ions act as a heterogeneous catalyst. - **B** The hydrogen ions are in the same phase as the reactants. - C The hydrogen ions are used up in the reaction. - **D** The hydrogen ions have no effect on the activation energy of the reaction. Ethyl propanoate is refluxed with aqueous sodium hydroxide. The alcohol produced is then reacted with methyl propanoic acid to make a second ester. What is the structural formula of this second ester? The ester ethyl butanoate can be hydrolysed using an excess of dilute sodium hydroxide solution. Which substance is a product of this reaction? - A CH₃CH₂CH₂CO₂Na - B CH₃CO₂Na - C CH₃CH₂ONa - D H₂O $1145.\ 9701_w18_qp_11\ Q:\ 29$ The diester shown can be hydrolysed by heating with an excess of aqueous sodium hydroxide. What would the products of this reaction be? 1146. 9701_w18_qp_12 Q: 28 Compound Y gives methanol and sodium ethanoate on treatment with aqueous sodium hydroxide. What is the structure of Y? - A CH₃CO₂CH₃ - B HCO₂C₂H₅ - C HO₂CCH₂CHO - D HOCH2CH2COOH 1147. 9701_s17_qp_12 Q: 30 Which compound, when hydrolysed, gives propanoic acid and propan-2-ol? - A CH₃CH₂CO₂CH₂CH(CH₃)CH₃ - (CH₃)₂CHCO₂CH₂CH₃ - CH₃CH₂CO₂CH(CH₃)CH₃ - D CH₃CH₂CH₂CO₂CH(CH₃)CH₃ $$1148.\ 9701_w17_qp_11\ Q:\ 30$$ A sample of the ester CH₃CH₂CH₂CO₂CH₂CH₃ is hydrolysed. The product mixture is then treated with hot, acidified KMnO₄. horidae What are the final carbon-containing products? - A CH₃CH₂CO₂H only - CH₃CO₂H + CH₃CH₂CO₂H - CH₃CO₂H + CH₃CH₂CH₂CO₂H - D CH₃CH₂OH + CH₃CH₂CO₂H $$1149.\ 9701_m16_qp_12\ Q:\ 28$$ Which mixture could be used to produce propyl methanoate? - A CH₃CH₂CO₂H and CH₃OH - CH₃CH₂CH₂CH₂OH and HCO₂H - CH₃CH₂CH₂OH and HCO₂H - CH₃CH₂CH₂CO₂H and CH₃OH Which row of the table is correct? | | increa <mark>sing</mark> number of carbon atoms ———— | | | | |---|------------------------------------------------------|-------------------|-------------------|-------------------| | Α | ethyl methanoate | methyl propanoate | pentyl pentanoate | propyl butanoate | | В | ethyl methanoate | methyl propanoate | propyl butanoate | pentyl pentanoate | | С | methyl propanoate | propyl butanoate | ethyl methanoate | pentyl pentanoate | | D | propyl butanoate | ethyl methanoate | pentyl pentanoate | methyl propanoate | $$1151.\ 9701_s16_qp_11\ Q:\ 21$$ The structural formula of compound **X** is shown below. compound X What is the name of compound ${\bf X}$ and how does its boiling point compare with that of butanoic acid? | | name of X | boiling point of X | |---|-------------------|---------------------------| | Α | methyl propanoate | higher than butanoic acid | | В | methyl propanoate | lower than butanoic acid | | С | propyl methanoate | higher than butanoic acid | | D | propyl methanoate | lower than butanoic acid | Cyclic esters are also known as lactones. Delta lactone is used as a solvent and in the manufacture of polyesters. From which compound could delta lactone be made by a single reaction? - A HOCH₂CH₂CH₂CH₂CHO - B HOCH₂CH₂CH₂CO₂H - C HOCH₂CH₂CH₂CH₂OH - D HOCH₂CH₂CH₂CH₂CH₂CO₂H The ester CH₃CH₂CO₂CH₂CH(CH₃)₂ was hydrolysed under acidic conditions. What are the organic products of this hydrolysis? - A butanoic acid and 2-methylpropan-1-ol - **B** butanoic acid and 2-methylpropan-2-ol - C butan-1-ol and 2-methylpropanoic acid - **D** propanoic acid and 2-methylpropan-1-ol 1154. 9701 s16 qp 12 Q: 30 Compound X, $C_4H_8O_2$, has an unbranched carbon chain. An aqueous solution of X has an approximate pH of 3. Compound Y, C₃H₈O, is a secondary alcohol. X and Y are reacted together in the presence of a little concentrated sulfuric acid to form Z as the major organic product. What is the structural formula of Z? - A (CH₃)₂CHCO₂CH₂CH₂CH₃ - B CH₃(CH₂)₂CO₂CH(CH₃)₂ - \mathbf{C} CH₃(CH₂)₂CO₂(CH₂)₂CH₃ - D (CH₃)₂CHCO₂CH(CH₃)₂ $1155.\ 9701_s16_qp_13\ Q:\ 29$ The ester, CH₃CH₂CO₂CH₃, is hydrolysed by boiling with aqueous sodium hydroxide. Which compound is one of the products? - A ethanol - B propan-1-ol - C sodium methanoate - D sodium propanoate 1156. 9701_s16_qp_13 Q: 30 Caprolactone is a cyclic ester. It is being used increasingly for the manufacture of specialist polymers. From which compound could caprolactone be made by a single reaction? - A OHCCH₂CH₂CH₂CH₂CHO - B HOCH₂CH₂CH₂CH₂CH₂CH₂OH - C HOCH₂CH₂CH₂CH₂CH₂CO₂H - D HO₂CCH₂CH₂CH₂CH₂CO₂H 1157. 9701_w16_qp_11 Q: 23 Part of the structure of a fungicide, strobilurin, is shown. R and R' are inert groups. In this reaction, strobilurin is warmed with aqueous sulfuric acid producing compound X. Compound X is then treated with hydrogen in the presence of a nickel catalyst producing compound Y. What could be the structure of compound Y? 1158. 9701_w16_qp_11 Q: 29 Which formula represents an ester that will form propanoic acid on hydrolysis with dilute sulfuric acid? 1159. 9701_w16_qp_12 Q: 26 Ethane-1,2-diol, $HOCH_2CH_2OH$, reacts with an excess of ethanoic acid, CH_3CO_2H , in the presence of an acid catalyst. A compound is formed with the molecular formula $C_6H_{10}O_4$. What is the structure of this compound? - A CH₃OCOCH₂CH₂CO₂CH₃ - B CH₃CO₂CH₂CH₂CO₂CH₃ - C CH₃CO₂CH₂CH₂OCOCH₃ - D HOCH₂CH₂COCH₂OCOCH₃ $1160.\ 9701_w16_qp_12\ Q:\ 29$ How many of the compounds shown will react with aqueous sodium hydroxide to form the sodium salt of a carboxylic acid? **A** 1 **B** 2 C 🚄 **D** 4 1161. 9701_s15_qp_11 Q: 21 The cyclic compound M is heated with dilute hydrochloric acid. compound M What are the products of the reaction? - A HOCH₂CO₂H and H₂NCH₂CO₂H - HO₂CCH₂OH and HO₂CCH₂NH₃⁺ - H₂NCOCH₂OH and HOCH₂CHO - Palpaca Intolidos Into HOCH₂CONH₃⁺ and HOCH₂CHO $$1162.\ 9701_s15_qp_12\ Q\hbox{:}\ 30$$ The drug Sirolimus is used to treat patients after kidney transplants. On reaction with hot aqueous sodium hydroxide, *Sirolimus* produces an equimolar mixture of two organic products. What is the structural formula of the product with the lower relative molecular mass? $1163.\ 9701_s15_qp_13\ Q:\ 23$ An ester P with a fruity odour has the following structural formula. Which compounds are produced when P is hydrolysed using hydrochloric acid? - A CH₃COC*l* and (CH₃)₂CHCH₂CH₂OH - B CH₃CHO and (CH₃)₂CHCH₂CH₂OH - C CH₃CO₂H and (CH₃)₂CHCH₂CH₂CHO - D CH₃CO₂H and (CH₃)₂CHCH₂CH₂OH 1164. 9701 w15 qp 11 Q: 30 Which compound produces butan-2-ol and ethanoic acid on hydrolysis? **A** CH₃CO₂CH(CH₃)₂ - B CH₃CO₂CH(CH₃)CH₂CH₃ - C CH₃CH(CH₃)CO₂CH₂CH₃ - D CH₃CH₂CO₂CH(CH₃)CH₂CH₃ 1165. 9701_w15_qp_12 Q: 30 The structure of aspartame, which is used as an artificial sweetener, is shown. If aspartame is warmed in aqueous alkali, which of bonds 1 and 2 will be broken? - both bond 1 and bond 2 - В bond 1 only - bond 2 only С - neither bond 1 nor bond 2